
Applying Jlint to Space Exploration Software 

Cyrille Artho‘ and Klaus Havelund2 

Computer Systems Institute, ETH Zurich, Switzerland 
Keseel Technology, NASA Ames Research Center, Moffett Field, California USA 

Abstract. Java is a very successful programming language which is also be- 
coming widespread in embedded systems, where software correctness is critical. 
Jlint is a simple but highly efficient static analyzer that checks a Java program 
for several common errors, such as n u l l  pointer exceptions, and overflow er- 
rors. It also includes checks for multi-threading problems, such as deadlocks and 
data races. The case study described here shows the effectiveness of Jhnt in find- 

false positives in the muIti-threading warnings gives an insight into design pat- 
terns commonly used in multi-threaded code. The results show that a few analy- 
sis techniques are sufficient to avoid almost all false positives. These techniques 
include investigating all possible callers and a few code idioms. Verifying the 
comect application of these patterns is still crucial, because their correct usage is 
not trivial. 

k.?g ccittii faiiYt, kc!nding iiiiiYt-*&-e&ig piobkiii;. Analyzing the ieasaiis fai 

1 Introduction 

Java is becoming more widespread in the area of embedded systems, both as a scaled- 
down “Micro Edition” [20] or by having real-time extensions [6,5]. In such systems, 
software failures are very costly, because the software cannot always be replaced on a 
running system, and failures may have expensive or even catastrophic consequences.. 
These costs are obviously prohibitively high when a software-related problem causes 
the failure of a space craft [14]. 

Therefore an automated tool which can detect faults easily, preferably early in the 
lifecycle of software, can be very useful to find defects. One tool that allows fault de- 
tection easily, even in incomplete systems, is Jlint. Among similar tools geared towards 
Java, it is one of the most suitable with respect to ease of use (no annotations required) 
and free availability (the tool is Open Source) [I]. 

. 

. .  

1.1 The Java programming langgage 

Java is a modem, object-oriented programtning language that has had a large success 
in the past few years. It was one of the first languages where the source code was not 
compiled to machine code, but to a different form, the byrecode. This bytecode runs in 
a dedicated environment, the virrual machine. In order to guarantee the integrity of the 
system, each class file containing bytecode is checked prior to execution [II ,  19,211. 

The Java language allows each object to have any number offields, which are at- 
tributes of each object. These may be static, Le., shared among all instances of a certain 

, 



class, or dynamic, Le., each instance has its own fields. In contrast to that, local vari- 
ables are thread-local and only visible within one method. 

Java allows inheritance: a method of a given class may be overridden by a method 
of the same name. Similarly, fields in a subclass shadow those with the same name 
in the superclass. In general, these mechanisms work well for small code examples 
but are dangerous in larger projects. Methods overriding other methods must ensure 
they do not violate invariants of the Superclass. Similar problems occur with variable 
shadowing. The programmer is not always aware that a variable with the same name 
already exists on a different level, such as the superclass. 

In order to prevent incorrect programs from corrupting the system, Java’s virtual 
machine has various safety mechanisms built in. Each variable access is guarded against 
manipulating memory outside the allocated area. In particular, pointers must not be 
n u l l  when dereferenced, and array indices must be in a valid range. If these properties 
are violated, an exception is thrown indicating a programming error. This is a highly 
undesirable behavior in most cases. Ideally, such errors should be prevented by static 
analysis, rather than caught at run-time. 

Furthermore, Java offers mechanisms to write multi-threaded programs. The two 
key mechanisms are locking primitives, using the synchron ized  keyword, and inter- 
thread synchronization with the w a i t  and n o t i f y  methods. A method or block which 
is declared synchron ized  is only entered after the exclusive lock for that critical sec- 
tion has been obtained. Lock usage for shared data is specified by the programmer. 
Incorrect lock usage using too many locks may lead to deud1ock.s. For example, if two 
threads each wait on a lock held by the other thread, both threads cannot continue their 
execution. On the other hand, if a value is accessed with insufficient lock protection, 
data races may occur: two threads may access the same value concurrently, and the 
results of the operations are no longer deterministic. 

Java’s message passing mechanisms for threads also is a source of problems. A 
call to wait allows a thread to suspend until a condition becomes true, which must 
be signaled by n o t i f y  by another thread. When calling wait the calling thread must 
ensure that it owns the lock it waits on, and also release any other locks before the call. 
Otherwise, remaining locks held are unavailable to other threads, which may in turn 
block when trying to obtain them. This can prevent them from calling n o t i f y  which 
would allow the waiting thread to release its lock. This situation is also a deadlock. 

1.2 Related work 

Much effort has gone into fault-finding in Java programs, single-threaded and multi- 
threaded. The approaches can be separated into static checkers, which check a program 
at compile-time and try to approximate its run-time behavior, and dynamic checkers, 
which try to catch and analyze anomaiies during program execution. 

Several static analysis tools exist that examine a program for faults such as n u l l  
pointer dereferences or data races. The ESC/Java [9] tool is, like nint, also based on 
static analysis, or more generally on theorem proving- It, however, requires annotation 
of the program. While it is more precise than Jlint, it is not nearly as fast and requires a 
large effort from the user to fully exploit the power of this tool [9]. 

2 



Dynamic tools have the advantage of having more precise information available 
in the execution trace. The Eraser algorithm [22], which has been implemented in the 
Visual Threads tool [12] to analyze C and C++ programs, is an example of a such 
an algorithm that examines a program execution trace for locking patterns and variable 
accesses in order to predict potential data races. It also checks for deadlocks and several 
other errors. 

The Java PathExplorer tool (JPaX) [ 161 performs deadlock analysis and the Eraser 
data race analysis on Java programs. It furthermore recently has been extended with the 
high-level data race detection algorithm described in [3]. This algorithm analyzes how 
collections of variables are accessed by multiple threads. 

More heavyweight dynamic approaches include model checking, which explores 
all possible schedules in a program. Recently, model checkers have been developed 
that apply directly to programs (instead of just models thereof). This includes the Java 
PathFinder system (JPF) developed by NASA [15,24], and similar systems [lo, 8,17,4, 
231. Such systems, however, suffer from the state space explosion problem. In [13] we 
describe an extension of Java PathFiider which performs data race analysis (and dead- 
lock analysis) in simulation mode, whereafter the model checker is used to demonstrate 
whether the data race (deadlock) warnings are real or not. 

This paper focuses on applying Jlint [2] to the software for detecting errors stat- 
ically. JLint uses static analysis and abstract interpretation to find difficult errors at 
compile-time. A similar case study with K i t  has been made before, applying it to large 
projects [2]. The difference to this case study is that the other case study had scalability 
in mind. Jlint had been applied to packages containing several hundred thousand lines 
of code, generating hundreds of warning messages. Because of this, the warnings had 
been evaluated selectively, omitting some hard-to-check deadlock warnings. In this case 
study, an effort was made to analyze every single warning and also see what kinds of 
design patterns cause false positives? 

13 Outline 

This text is organized as follows: Section 2 describes Jlint and how it was used for this 
project. Sections 3 and 4 show the results of applying Jlint to space exploration program 
code. Design patterns which are common among these two projects are analyzed in 
Section 5. Section 6 summarizes the results and concludes. 

2 Jlint 

2.1 Tool description 

Jlint checks Java code and finds bugs, inconsistencies and synchronization problems by 
performing a data flow analysis, abstract interpretation, and building the lock graph. It 
issues warnings about potential problems. These warnings do not imply that an actual 

Design patterns commonly denote compositions of objects in software. In this paper, the notion 
of composition is different. It indudes lock patterns and sometimes only applies to a small part 
of the program. In that context, we also use the term “code idiom”. 

3 



error exists. This makes Jlint unsound as a program prover. Moreover, Jlint can also 
miss errors, making it incomplete. The reason for this is that the goal was to make Jlint 
practical, scalable, and possible to implement it in a short time. 

Typical warnings about possible faults issued by Jlint are n u l l  pointer dereferences, 
array bounds overflows, and value overflows. The latter may occur if one multiplies two 
32 bit integer values without converting them to 64 bit f is t  

Many warnings that Jlint issues are code guidelines: A local variable should never 
have the same name as a field of the same class or a superclass. When a method of a 
given name is overridden, all its variants should be ovemdden, in order to guarantee a 
consistent behavior of the subclass. 

I Jlint also includes many analyses for multi-threaded programs. Some of Jlint’s 
warnings for multi-threaded programs are overly cautious. For instance, possible data 
race warnings for method calls or variable accesses do not necessarily imply a data 
race. The reason for such false positives are both difficulties inherent to static analysis, 
such as pointer aliasing across method calls, and limitations in Jlint itself, where its 
algorithms could be refined with known techniques. 

2.2 Warning review process 

Jlint gives fairly descriptive warnings for each problem found. The context given is 
limited to the class in which the error occurs, the line number, and fields used or meth- 
ods called. This is always sufficient to find the source of simple warnings, which con- 
cern sequentid properties such as n u l l  pointer dereferences. These warnings are easy 
to review and were considered in a first pass. The other warnings, concerning multi- 
threading problems, take much more time to consider, and were evaluated in a second 
phase. 

The review process essentially checks whether the problems described in the warn- 
ings cm actually occur at run-time. In simple cases, warnings may be ruled out given 
the algorithmic properties of the program. Complex cases include reviewing callers to 
the method in question. 

Data race and deadlock warnings fall in this category. They require constructing a 
part of the call graph including locks owned by callers when a method is called. If it 
can be ensured that all calls to non-synchronized shared methods are made only through 
methods that already employ lock protection then there cannot be a data race: 

This review process can be rather time-consuming and took up to twelve minutes for 
one problem instance in the experiments carried out. Many warnings occur in similar 
contexts, so warnings referring to the same problem can usually be easily confirmed as 
duplicates. This part of the review process was not yet automated in any way but could 
be automated to a large extent with known techniques. Both cases studies were done 
without prior knowledge of the program code. It can be assumed that the time to review 
the warnings is shorter for the author of the code, especially when reviewing data race 
or deadlock warnings. 

Methods that access a shared field are also considered “shared” in this context. The lock used 
for ensuring mutual exclusion must be the same lock for all calls. 

4 



During the review process, Jlint’s warnings were categorized to see whether they 
refer to the same problem. Such situations constitute calls to the same method from 
different callers, the same variable used in different contexts, or the same design pattern 
applied throughout the class. In a separate count, counting the number of distinct prob- 
lems rather than individual warnings, all such cases were counted once. Furthermore, 
the time required for this process was recorded. Note that the review activity was often 
interrupted by other activities such as writing this paper. We believe this reduced the 
overall time required because manual code reviews require much attention, and cannot 
be canied out in one run without a degradation of the concentration required. 

3 First case study: Rover code 

The first case study is a software module, called the Executive, for controlling the move- 
ment of the planetary wheeled rover K9, developed at NASA Ames Research Center. 
The run time for analyzing the code with Jlint was 0.10 seconds on a PowerPC G4 with 
a clock frequency of 500 MHz. 

3.1 

K9 is a hardware platform for experimenting with rover technology for exploration of 
the Martian surface. The Executive is a software module for controlling the rover, and is 
essentially an interpreter of plans, where a plan is a special form of a program. Plans are 
constructed from high-level constructs, such as sequential composition and condition- 
als, but no while loops. The effect of while loops is achieved by assuming that plans are 
generated on the fly during rover operation as environment conditions change. The low- 
est level nodes of a plan are tasks to be directly executed by the rover hardware. A node 
in a plan can be further constrained by a set of conditions, which when failing during 
exzcution, cailse the Executive to abort the execution of the subsequent sibling nodes, 
unless specified otherwise through options. Examples of conditions are pre-conditions 
and post-conditions, as well as invariants to be maintained during the execution of the 
node. The examined Executive consists of 7,300 lines of Java code. This code was ex- 
tracted by a colleague from the original rover code, written in 35,000 lines of Cti-. 
The code is highly multi-threaded, and hence provides a risk for concurrency errors. 
The Java version of the code was extracted as part of a different project, the purpose of 
which was to compare various formal methods, such as model checking, static analysis, 
runtime analysis, and simple testing [7]. The code contained a number seeded of errors. 

Description of the Rover project 

3.2 Jlint evaluation 

Jlint issues 249 warnings when checking the Rover code. Table 1 summarizes Jlint’s 
output. The first two columns show how each type of problem and how many warnings 
Jlint generated for them. The third, forth and fifth column show the result of the manual 
source code analysis: how many actual, distinct faults, or at least serious problems, 
in the code were found, how many warnings described such actual faults, and how 
many were considered to be false positives. The last column shows the time spent on 

5 



code review. In the first phase, focusing on sequential properties, ten warnings were 
reviewed, while the second phase had 239 warnings to be reviewed. 

Warnings Problems Correct False 
found warnings positives 

Type 

n u l l  pointer 5 1 4 1 
Integer overflow 2 2 2 
equals overridden but not hashcode 2 1 2 
String comparison as reference 1 0 0 

Data race, method call 157 5 

Total: Sequential errors 10 4 8 2 
Incorrect w a i t h o t i f y  usage 21 5 5 16 

18 139 
Data. race, field access 31 0 0 31 
Deadlock 30 7 20 10 

43 196 Tot&: Mu!t;-t!!zeac!kg emrs  239 17 
51 198 Total 249 21 

Time 
[min.] 

10 
0 5  
0 1  
1 1  

17 
26 

112 
43 
36 

217 
234 

Sequential errors: Among the problems found are two integer overflows, where two 
32-bit integers were multiplied to produce a 64 bit result. However, integer conversion 
took place afer the 32 bit multiplication, where an overflow may occur. 

Two other warnings referred to one problem, where equals was overridden, but not 
hashcode. This is dangerous because the modified equals method may return true for 
comparing two objects even though their hashcode differs, which is forbidden [21]. 

This was correct in that context because one of the strings was always known to be null. 
A noteworthy false positive ccncerned two strings that were compared as references. - 

Multi-threading errors: The number of deadlock and data race warnings given by 
Jlint was almost prohibitive. Yet, for answering the question why the false positives 
were generated, all warnings were investigated. All warnings were relatively easy to 
analyze. In most cases, possible callers were within the same class. Only for the most 
complex class, the call graph was large, making analysis more diff ic~l t .~  

A surprisingly high number of multi-threading warnings were of type “Method 
‘<this>.wait InotifylnotifyAll‘ is called without synchronizing on ‘<this>‘.” 
After discounting dead code and false positives, one scenario remained: A lock was 
obbined condifonal!y, dt5ough it shonld be obtained in all c a s ,  2s required by the 
Java semantics for wait and notify. In the Rover code, this reflects a global switch in 
the original C++ program that would allow testing the program without locking, elimi- 
nating possible deadlocks at the cost of introducing data races. Java does not allow this, 
so the Java version of the program always needs to be run with locking enabled. 

The portion of the call graph to be investigated for this was up to eight methods deep. 

6 



All data race warnings about shared field accesses were false positives. Reasons 
for false positives include the use of thread-local copies [I81 or a thread-safe container 
class. In one case, only one thread instance that could access the shared field is ever 
generated. 

Evaluating data races for method calls was even more difficult and time-consuming. 
The errors found referred to cases where a read-only pattern, which is a way of prevent- 
ing data races without using locking, was broken by certain methods, creating potential 
data races. Because of their high number, the distribution of method data race warn- 
ings is noteworthy. A few classes which embody parallelized algorithms are by far the 
most complex ones. Therefore they incurred the largest number of warnings, which 
were also the hardest to review. Classes encapsulating data are usually much simpler. 
Because some of these were heavily used in the program, a few of these data container 
classes were also responsible for a large number of warnings. However, these warnings 
were usually much easier to review. 

The 30 deadlock warnings all referred to the same two classes. There were two sets 
of warnings, the first set containing ten, the second one 20 warnings. The first ten warn- 
ings, all of them false positives, showed incomplete loops in the call graph. The next 20 
warnings, referring to seven methods, showed the same ten warnings with another edge 
in the call graph, from the callee class back to the caller. In this loop, another lock was 
used that makes a deadlock possible. Therefore these warnings referred to actual faults 
in the code. 

Results: All in all, in only a quarter of an hour, four faults in the code could be found 
by looking at the ten warnings referring to sequential properties. While reviewing the 
multi-threading warnings was time-consuming due to the complex interactions in the 
code, it was feasible and helped to highlight the critical parts of the source code. The 
effort was justifiable for a project of this complexity. 

3.3 Comparison to other projects 

In an internal case study at NASA Ames [7], several other tools were applied to the 
Rover code base, detecting 38 errors. Among these errors were 18 seeded faults. In- 
terestingly, most of these errors found were not those detected by Jlint Almost all the 
seeded bugs concerned algorithmic problems or hard-to-find deadlocks, which Jlint was 
not capable of finding. However, Jlint in tum detected a lot of faults which were not 
found by any other tool. Table 2 compares Jlint to the other case studies. In that table, 
missed faults include both sequential and multi-threading properties. 

The eleven new bugs found by J h t  were a great success, even considering that the 
seven deadlocks correspond to two classes where other deadlocks have been known to 
occur. However, Jlint reported different methods than those reported in otiier analyses. 

4 DS1 

The second case study consisted of an attitude control system and a fault protection 
system for the Deep Space 1 @SI) space craft. For the DS1 code base, it took 0.17 

7 



l ~ r r o r  tvnt I #/Evaluation -,r- 

Seeded faults 
Non-seeded faults, other than overflow 
Integer overflow 
null pointer 
equals ovemdden but not hashcode 
Incolrect w a i t h o t i f y  usage 
Data races 

18 Not found by Jlint 
18 Not found by Jlint 
2 Found by both case studies 
1 New (Le., only found by Jlint) 
1 Translation artifact (not occumng in the C version) 
5 Debugging artifact (not executable in Java) 
5 3 new, 2 dead code (unused methods) 

Table 2. Comparison of errors found by Jlint and by other tools. 

seconds to check the entire code base on the same PowerPC G4 with a clock frequency 
of 500 MHz. 

4.1 Description of DSI 

DS1 was a technology-testing mission, which was launched October 24 1998, and 
which ended its primary mission in September 1999. DS1 contained and tested twelve 
new kinds of space-travel technologies, for example, ion propulsion and artificial intel- 
ligence for autonomous control. DS 1 also contained more standard technologies, such 
as an attitude-control system and a fault-protection system, coded in C. The attitude- 
control system monitors and controls the space craft’s attitude, that is, its position in 3- 
dimensional space. The attitude is controlled by small thrusters, which can be pointed, 
and fired, in different directions. The fault-protection system monitors the operation of 
the space craft and initiates corrective actions in case errors occur. The code examined 
in this case study is an 8,700-line Java version of the attitude-control system and fault- 
protection system, created in order to examine the potential for programming flight 
software in Java, as described in [5]. That effort consisted in particular of experiment- 
ing with the real-time specification for Java [6]. The original C code was re-designed in 
Java, using best practices in object-oriented design. The Java version used design pat- 
terns extensively, and put an emphasis on pluggable technology, relying on interfaces. 

4.2 Jlint evaluation 

Sequential errors: Again, a first evaluation of Jlint’s warnings included only the se- 
quential cases. Table 3 shows an overview. 

Eleven warnings referred to name clashes in variable names, a large risk of future 
programming errors. False positives resulted from either dead code, or a code idiom 
that was poor choice but acceptable in that case, and compiler artifacts introduced by 
inner classes. 

Three warnings reported problems with overridden methods, where several versions 
of a method with the same name but different parameter lists (“signatures”) were only 
partially ovemdden. This must be avoided because inconsistencies among the overrid- 
den and inherited variants are almost inevitable. 

8 



Type Warnings Problems Correct False lime 
found warninos Dositives rmin.1 

Local variable shadows field 4) 21 2) 2) 2 

Incomplete method overriding 31 31 3) 0 )  3 

Total: Sequential errors 

Table 3. Jlint’s wamings for the DS1 code. 

151 51 51 101 9 

Multi-threading errors: In the second phase, the 37 multi-threading warnings were 
investigated. Most of them were false positives: Warnings about run methods which are 
not synchronized are overly conservative, warnings about wai t lno t i fy  were caused 
by the unsoundness of Jlint’s data flow analysis. 

False positives for data race warnings were mostly caused by the fact that Jlint does 
not analyze all callers when checking methods for thread safety. If all callers synchro- 
nize on the same lock, a seemingly unsafe method becomes safe. Other reasons for 
false positives were the use of thread-safe container classes in such methods, the use of 
read-only fields, and per-thread confinement [ 181, which always creates a new instance 
as return value. 

The six warnings indicating an error concerned calls to a logger method. In the 
logger method, there were indeed data races, even though they may not be considered to 
be crucial: The output of different formatting elements of different entries to be logged 
may be interleaved. 

Again, as in all non-trivial examples, deadlock warnings are almost impossible to 
investigate in detail without a call graph browsing tool. Nevertheless, an effort was 
made. After 12 minutes, it was found that the first deadlock warning was a false alarm 
due to the lack of context sensitivity in Jlint’s call graph analysis. After this, most warn- 
ings could be dismissed as duplicates of the first one. In the two remaining cases, Jlint’s 
warnings did not give the full loop context, so they could not be used. 

- .  
Data race, field access 
Data race, method call 
Deadlock 
Total: Multi-threading enors 

Results: Most sequential warnings could be evaluated very quickly. The problems 
found were code convention violations, which would not necessarily cause run-time 
errors. However, they are easy to fix and should be addressed. 

Reviewing the data race warnings was relatively simple, although it would have 
been much easier with a call graph visualization tool. Most false positives could have 

1 0 0 1 7  
14 38 20 1 6 

11 0 0 11 20 
47 1 6 41 70 

9 



been prevented by a more complete call graph analysis or recognizing a few simple 
design patterns. 

Code base Rover 

5 Design patterns in multi-threaded software 

DS 1 ITotal 

Sections 3 and 4 have shown that sequential properties are, by their nature, easy to 
evaluate with the aid of a static analysis tool. This is not the case with multi-threading 
problems, because the number of false positives reported is very high, and each warning 
takes a substantial amount of time to review. 

There are two ways to improve the situation: Make the evaluation of warnings easier 
using visualization tools, or improve the quality of the analysis itself, reducing the false 
positives. We focused on the latter aspect. When analyzing the warnings, it soon became 
apparent that only a few common code idioms were behind the problems. The remainder 
of this paper investigates what patterns are used to avoid multi-threading problems. 

T&!e 4 shows an overview of the different design patterns used in the code of the 
two space exploration projects to avoid conflicts with unprotected fields or methods. 
The counts correspond to the applications of these patterns, all of which result in one 
or more spurious warnings when analyzed with Jlint. When using these patterns, there 
appears to be a data race, if a method is considered in isolation or without considering 
thread ownership. There is no data race when considering the entire program. 

Table 4. Design patterns for avoiding data races in seemingly unsafe methods 

The most common idiom used to prevent data races was the use of read-only values. 
Read-only values are usually declared f i n a l  and not changed after initialization. Be- 
cause this declaration discipline is not always foliowed strictly, recognizing it statically 
is not always trivial, but nevertheless feasible by checking all uses of a given field in 
the entire code. Ensuring global thread-safety in such cases is of course only possible 
in the absence of dynamic class loading. Other design patterns include: 

- Ensuring mutual exclusion in an unsafe method by having all callers of that method 
acquire a common lock. 

10 



The usage of copies of data returned by a method ensures that the “working copy” 
used subsequently by the caller remains thread-local. 
Copying method parameters restricts data ownership to the called method and the 
current thread. 
Legacy container data structures such as Vector are inherently thread-safe. 
Finally, if there exists only one thread instance of a particular class, no data races 
can occur if that thread is the only type that calls a certain method. 

Two cases of false positives were not included in this summary: unused meth- 
ods (dead code) and conditional locking based on a global flag used for debugging 
w a i t f n o t i f y  locking (which was permissible in the original C++ Rover code but not 
in the Java version). 

This study indicates that four design patterns prevail in cases where code is appar- 
ently not thread-safe: Synchronization of all callers, use of read-only values, thread- 
local copies of data, and the use of thread-safe container classes. Although simple pat- 
terns prevail, their usage is not aiways trivial: Some of the data race warnings for the 
Rover code pointed out cases where it was attempted to use the read-only pattern, but 
the use was not carried out consistently throughout the project. Such a small mistake 
violates the property that guarantees thread-safety. 

6 Conclusions 

Space exploration software is complex. The high costs incurred by potential software 
failures make the application of fault-finding tools very fruitful. Jlint was very success- 
ful as such a tool in both case studies, complementing the strengths of other tools. In 
each project, the study found four or five significant problems within only 15 minutes 
of evaluating Jlint’s warnings. The multi-threading warnings were more difficult and 
time-consuming to evaluate but still effective at pointing out critical parts in the code. 

An analysis of the false positives showed that in apparently thread-unsafe code, 
four common design patterns ensure thread-safety in all  cases. Static analysis tools 
should therefore be extended with specific algorithms geared towards these patterns to 
reduce false positives. Furthermore, these patterns were not always applied correctly 
and are still a significant source of programming errors. This calls for tools that verify 
the correct application of these patterns, thereby pointing out even more subtle errors 
than previously possible. 

References 

1. C. Artho. Finding faults in multi-threaded programs. Master’s thesis, ETH Zurich, 2001. 
2. C. Artho and A. Biere. Applying static analysis to large-scale, mulii--&eaded Javapropms. 

In D. Grant, editor, Proceedings of the Z3rhASWEC, pages 68-75. IEEE CS Press, 2001. 
3. C. Artho, K. Havelund, and A. Biere. High-Level Data Races. In WEZS’03, April 2003. 

France. 
4. T. Ball, A. Podelski, and S .  Rajamani. Boolean and Cartesian Abstractions for Model Check- 

ing C Programs. In Proc. TACAS’OI: Tools and Algorithms for the Construction and Analysis 
of Systems, LNCS, Italy, 2001. 

11 



c . 

5. E. G. Benowitz and A. F. Niessner. Java for Flight Software. In Space Mission Challenges 
for Information Technology, July 2003. 

6. G. Bollella, J. Gosling, B. Brosgol, P. Dibble, S .  Furr, and M. Turnbull. The Real-Time 
Spec8cation for Java. Addison-Wesley, 2000. 

7. G. Brat, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, A. Venet, 
and W. Visser. Experimental Evaluation of Verification and Validation Tools on Martian 
Rover Software. In SEI Software Mode! Checking Workshop, 2003. Extended abstract. 

8. J. Corbett, M. B. Dwyer, J. Hatcliff, C. S. Pasareanu, Robby, S .  Laubach, and H. Zheng. 
Bandera: Extracting Finite-state Models from Java Source Code. In Proc. 22nd Znfernafional 
Conference on Software Engineering, Ireland, 2000. ACM Press. 

9. D. L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J. B. Saxe. Extended Static Checking. 
Technical Report 159, Compaq Systems Research Center, Palo Alto, California, USA, 1998. 

10. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In Proc. 24th 
ACM Symposium on Principles of Programming Languages, pages 174-186, France, 1997. 

11. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Virtual Language Specificarion, 
Second Edition. Addison Wesley, 2000. 

12. J. Karrow. Railiiiiie Checkiiig of Ziiltittieded A,-p!icatkm r:.W V i s d  Tkeads. I!! 7th 
SPIN Workshop, volume 1885 o f  W C S ,  pages 331-342. Springer, 2000. 

13. K. Havelund. Using Runtime Analysis to Guide Model Checking of Java Programs. In 7th 
SPIN Workshop, volume 1885 of M C S ,  pages 245-264. Springer, 2000. 

14. K. Havelund, M. Lowry, S .  Park, C. Pecheur, I. Penix, W. Visser, and J. whlte. Formal 
analysis of the remote agent before and after flight. In 5rh NASA Langley Formal Methods 
Workshop, June 2000. USA. 

15. K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder. 
International Journal on Software Tools for Technology Transfer, 2(4):366-38 1,2000. 

16. K. Havelund and G. Ro~u. Monitoring Java Programs with Java PathExplorer. In 
K. Havelund and G. Rop,  editors, Runtime Verification (RV'OI), volume 55 of ENTCS. 
Elsener Science, 2001. 

17. G. Holzmann and M. Smith. A Practical Method for Verifying Event-Driven Software. In 
Proc. ZCSE'99, International Conference on Sofnyare Engineering, USA, 1999. IEEWACM. 

18. D. Lea. Concurrent Programming in Java, Second Edition. Addison Wesley, 1999. 
19. T. Lindholm and A. Yellin. Tne Java Virtual Machine Specification, Second Edinon. Addison 

20. Sun Microsystem. Connected, limited device configuration. specification version 1.0% may 

21. Sun Microsystem. Java 2 documentation. h t t p :  / / lava. sun. corn/ J 2 se/ 1.4 I docs /. 
22. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic 

Data Race Detector for MuItithreaded Programs, ACM Transactions on Computer Sysrems, 
15(4):391411,1997. 

23. S. D. Stoller. Model-Checlang Multi-threaded Dismbuted Java Programs. In 7th SPIN 
Workshop, volume 1885 of LNCS, pages 224-244. Springer, 2000. 

24. W. Visser, K. Havelund, G. Brat, and S .  Park. Model Checking Programs. In Proc. 
ASE'2000: The 15th IEEE International Conference on Automared Software Engineering. 
WE CS Press, 2000. 

Wesley, 1999. 

2000. http:  //lava. sun. corn/ ]2me/docs/. 

12 


